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1. Introduction

The target manifolds of N = 2 supersymmetric σ models coupled to supergravity in d = 4

were shown to be quaternionic Kähler manifolds long time ago [1]. Later the results of [1]

were reformulated in harmonic superspace [2, 3] as well as in projective superspace [4].

Some of these theories arise as subsectors of the low energy effective theories of type IIA

or type IIB superstring compactified over a Calabi-Yau threefold. More specifically, type

IIA (IIB) theories over Calabi-Yau manifolds lead to d = 4, N = 2 supergravity coupled to

h(1,1)[h(2,1)] vector multiplets and (h(2,1) + 1)[(h(1,1) + 1)] hypermultiplets. Under further

dimensional reduction to three dimensions the vector moduli spaces can be written as

quaternionic Kähler manifolds ( c-map) [5, 6] and hence the moduli spaces become products

of two quaternionic Kähler manifolds in d = 3.

In this paper we study the symmetries of the N = 2 supersymmetric σ models with

quaternionic Kähler target manifolds that couple to supergravity in d = 4 using the har-

monic superspace (HSS) approach and show that there is a remarkable mapping between

the realization of the symmetries in the HSS formulation and the minimal unitary realiza-

tions of their isometry groups. This mapping is made readily manifest within the formula-

tion of minimal unitary realizations of noncompact simple groups obtained by quantization

of their geometric realizations as quasiconformal groups [7 – 11]. For N = 2 supersymmetric

σ models the relevant real forms are quaternionic.

The plan of the paper is as follows. Section 2 is devoted to a review of the formula-

tion of N = 2 supersymmetric quaternionic Kähler σ models in harmonic superspace and

implementation of their isometry groups through Killing potentials. In section 3 we review
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the quasiconformal realizations of noncompact groups that can be formulated simply and

in full generality using the Freudenthal triple systems associated with them. The quasicon-

formal groups can all be defined as invariance groups of generalized lightcones defined with

respect to a quartic norm. In section 4 we review the construction of the minimal unitary

representations of noncompact groups by quantization of their geometric realizations as

quasiconformal groups. In section 5 we show that for a quaternionic symmetric N = 2

d = 4 σ model there is a precise mapping between the Killing potentials of its isometry

group G and the generators of the minimal unitary realization of G given in sections 2 and

4, respectively. In section 6 we discuss some of the implications of our results and open

problems. In particular, we discuss the implications for the proposal that the quasiconfor-

mal extensions of U-duality groups of d = 4 Maxwell-Einstein supergravity theories act as

spectrum generating symmetry groups.

2. N = 2, d = 4 supersymmetric σ-models in harmonic superspace

The target spaces of N = 2 supersymmetric σ-models coupled to N = 2 supergravity are

quaternionic Kähler manifolds [1]. In this section we shall review the formulation of these

σ-models in N = 2, d = 4, harmonic superspace [12 – 14] following closely [15]. In the

harmonic superspace approach the metric on a quaternionic target space is determined by

a quaternionic potential L+4, which plays the same role for quaternionic Kähler manifolds

as the Kähler potential does for Kähler manifolds.

The N = 2 harmonic superspace action for the general 4n-dimensional quaternionic

σ-model is given by [15]

S =

∫
dζ−4du{Q+

α D++Q+α − q+
i D++q+i + L+4(Q+, q+, u−)}. (2.1)

where the integration is over the analytic superspace coordinates ζ, u±
i . The Q+

α (ζ, u), α =

1, . . . , 2n and the supergravity hypermultiplet compensators q+
i (ζ, u), (i = 1, 2) are analytic

N = 2 superfields. The u±
i , (i = 1, 2) are the S2 = SU(2)A

U(1) isospinor harmonics that satisfy

u+iu−
i = 1

and D++ is a supercovariant derivative with respect to harmonics with the property

D++u−
i = u+

i

We recall that the analytic subspace of N = 2 harmonic superspace involves only half

the Grassmann variables with coordinates ζM and u±
i

ζM := {xµ
A, θa+, θ̄ȧ+} (2.2)
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where

xµ
A := xµ − 2iθ(iσµθ̄j)u+

i u−
j

θa+ := θaiu+
i

θ̄ȧ+ := θ̄ȧiu+
i

θ(iσµθ̄j)u+
i u−

j := θ(ai(σµ)aȧθ̄
ȧj)u+

i u−
j

µ = 0, 1, 2, 3; a = 1, 2; ȧ = 1, 2

This analytic subspace does not involve U(1) charge −1 projections of the Grassmann

variables and is closed under N = 2 supersymmetry transformations. Furthermore it is

”real” with respect to the conjugation˜

x̃µ = xµ

θ̃+ = θ̄+ (2.3)

˜̄θ
+

= −θ+

ũi± = u±
i

ũ±
i − −ui±

which is a product of complex conjugation and anti-podal map on the sphere S2. For a

complete description of harmonic superspace we refer to the monograph [2].

The quaternionic potential L+4 is a homogeneous function in Q+ and q+ of degree two

and has U(1)-charge +4. It does not depend on u+ and is an arbitrary ”real function”

otherwise, with the reality being defined with respect to the involution .̃ For simplicity we

shall suppress the dependence of all the fields on the harmonic superspace coordinates ζM

and u±
i .

As was first pointed out in [16] and later elaborated in [15, 2] the action (2.1) has

a remarkable analogy to the Hamiltonian mechanics with the harmonic derivative D++

playing the role of time derivative. The superfields Q+ and q+ correspond to phase space

coordinates and the Poisson brackets are given by

{f, g}−− =
1

2
Ωαβ ∂f

∂Q+α

∂g

∂Q+β
− 1

2
ǫij ∂f

∂q+i

∂g

∂q+j
, (2.4)

where Ωαβ and ǫij are the invariant antisymmetric tensors of Sp(2n) and Sp(2) , respec-

tively. The indices are raised and lowered by these tensors

Q+α = ΩαβQ+
β (2.5)

q+i = ǫijq+
j

which satisfy1

ΩαβΩβγ = δα
γ (2.6)

ǫijǫjk = δi
k (2.7)

1Note that the conventions of [15] which we follow in this section differ from those of [11].
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Because of this analogy and following [15] we shall refer to the quaternionic potential L+4

as the Hamiltonian.

Isometries of the σ-model (2.1) are generated by Killing potentials K++
A (Q+, q+, u−)

that obey the conservation law

∂++K++
A + {K++

A ,L+4}−− = 0 (2.8)

where ∂++ is defined as

∂++ = u+i ∂

∂u−i

The Killing potentials form the Lie algebra of the isometry group

{K++
A ,K++

B }−− = f C
AB K++

C . (2.9)

under the Poisson brackets (2.4).

The ”Hamiltonians” of N = 2 σ-models coupled to N =2 supergravity with symmetric

target manifolds were given in [15]. The quaternionic symmetric spaces , sometimes known

as Wolf spaces [17], that are relevant to supergravity are of the non-compact type. For

each simple Lie group there is a unique non-compact quaternionic symmetric space. A

complete list of these spaces is given below.

SU(n, 2)

U(n) × Sp(2)

SO(n, 4)

SO(n) × SU(2) × Sp(2)

USp(2n, 2)

Sp(2n) × Sp(2)

G2(+2)

SU(2) × Sp(2)
F4(+4)

Sp(6) × Sp(2)

E6(+2)

SU(6) × Sp(2)

E7(−5)

SO(12) × Sp(2)

E8(−24)

E7 × Sp(2)
.

(2.10)

which are all of the form G/H × Sp(2) with H ⊂ Sp(2n).

For a given quaternionic symmetric target space G/H × Sp(2) of N = 2 σ model

coordinatized by Q+ and q+ , every generator ΓA of G maps to a function K++
A (Q+, q+, u−)

such that the action of K++
A is given via the Poisson brackets (2.4). The authors of [15]

showed that the Hamiltonian L+4 depends only on Q+ and the combination q+u− := q+iu−
i ,

L+4 = L+4(Q+, (q+u−)). (2.11)

and can be written as

L+4 =
P+4(Q+)

(q+u−)2
(2.12)

The fourth order polynomial P+4 is given by

P+4(Q+) =
1

12
Sαβγδ Q+αQ+βQ+γQ+δ (2.13)

where Sαβγδ is a completely symmetric invariant tensor of H. In terms of matrices taαβ, a =

1, 2, .., dim(H) representing the action of the Lie algebra h of H on Q+α the invariant tensor

reads as [15]

Sαβγδ = habt
a
αβtbγδ + ΩαγΩβδ + ΩαδΩβγ . (2.14)

where hab is the Killing metric of H.
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The Killing potentials that generate the isometry group G are [15]

Sp(2) : K++
ij = 2(q+

i q+
j − u−

i u−
j L+4), (2.15)

H : K++
a = taαβQ+αQ+β, (2.16)

G/H × Sp(2) : K++
iα = 2q+

i Q+
α − u−

i (q+u−)∂−
α L+4 , (2.17)

where

∂−
α :=

∂

∂Q+α

taαβ = Ωβγt γ
aα

The Sp(2) potentials K++
ij are conserved for an arbitrary polynomial P+4(Q+). ta are the

representation matrices of the generators of H acting on Q+α. This implies that the fourth

order polynomial P+4 is proportional to the quadratic ”Casimir function” habK++
a K++

b of

H. Furthermore , P+4 can also be expressed in terms of the coset Killing potentials, or

the Sp(2) Killing potentials as follows [15] :

P+4 = − 1

16
ǫijΩαβK++

iα K++
jβ = −1

8
K++ijK++

ij . (2.18)

3. Freudenthal triple systems and quasiconformal group actions

Lie algebra g of every simple Lie group G admits a 5-graded decomposition of the form

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2 . (3.1)

such that grade ±2 subspaces are one dimensional.2 The grade zero algebra g0 has the

form

g0 = h ⊕ ∆ (3.2)

where ∆ is the generator that determines the 5-grading. The grade ±2 generators and ∆

generate a distinguished sl(2) subalgebra of g. We shall denote the subgroup generated by h

as H. A simple Lie algebra with such a 5-graded decomposition can always be constructed

over a Freudenthal triple system F [18, 19]. Freudenthal introduced these triple systems

in his study of the metasymplectic geometries associated with exceptional groups [18]. A

Freudenthal triple system (FTS) is a vector space F with a trilinear product (X,Y,Z) and

a skew symmetric bilinear form < X,Y > that satisfy:3

(X,Y,Z) = (Y,X,Z) + 2 〈X,Y 〉Z ,

(X,Y,Z) = (Z, Y,X) − 2 〈X,Z〉Y ,

〈(X,Y,Z),W 〉 = 〈(X,W,Z), Y 〉 − 2 〈X,Z〉〈Y,W 〉 ,

(X,Y, (V,W,Z)) = (V,W, (X,Y,Z) + ((X,Y, V ),W,Z)

+ (V, (Y,X,W ), Z) . (3.3)

2Of course for sl(2) this 5-grading degenerates to a 3-grading.
3It should be noted that the triple product can be modified by terms involving the symplectic invariant,

such as 〈X, Y 〉Z. The choice given above was made in [7].
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A quartic invariant I4 can be defined over the FTS F using the triple product and the

bilinear form as

I4(X) :=
1

48
〈(X,X,X),X〉 (3.4)

which is invariant under the automorphism group H = Aut(F) of F .

In the corresponding construction of g over F , the generators of grade ±1 subspaces

of g are labelled by the elements of F and all the commutation relations are expressed

in terms of the triple product (X,Y,Z) [19]. Following [7] let us denote the Lie algebra

generators belonging to grade +1 and grade −1 subspaces as UA and ŨA, respectively,

where A ∈ F . The five grading now reads as

g = K̃AB ⊕ ŨA ⊕ SAB ⊕ UA ⊕ KAB

where A,B ∈ F . The symplectic trace of SAB is the generator ∆ that determines the

five grading [20]. Since they are one dimensional the grade ±2 generators KAB and K̃AB

labeled by two elements can be written as

KAB = 〈A,B〉K K̃AB = 〈A,B〉 K̃ (3.5)

Hence we have,

g = K̃ ⊕ ŨA ⊕ SAB ⊕ UA ⊕ K

Commutation relations among these generators in terms of the triple product of F was

given in [7] following earlier references [18, 19].

As was shown in [7] one can realize the Lie algebra g as a quasiconformal Lie algebra

over a vector space Q whose coordinates X are labeled by a pair (X,x), where X ∈ F and

x is an extra single variable as follows:

K (X) = 0 UA (X) = A SAB (X) = (A,B,X)

K (x) = 2 a UA (x) = 〈A,X〉 SAB (x) = 2 〈A,B〉x

ŨA (X) =
1

2
(X,A,X) − Ax

ŨA (x) = −1

6
〈(X,X,X) , A〉 + 〈X,A〉 x (3.6)

K̃ (X) = −1

6
(X,X,X) + Xx

K̃ (x) =
1

6
〈(X,X,X) ,X〉 + 2 x2

The symplectic traceless components of SAB generate the automorphism group H of the

FTS F and the trace part (∆) is the generator that determines the 5-grading.

One defines a quartic norm over the space Q as

N4(X ) := I4(X) − x2 (3.7)

and the ”distance” between any two points X = (X,x) and Y = (Y, y) in Q as

d(X ,Y) := N4(δ(X ,Y) (3.8)

– 6 –
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where δ(X ,Y) is the ”symplectic” difference vector of two vectors X and Y :

δ(X ,Y) = (X − Y, x − y + 〈X,Y 〉)

The invariance of d(X ,Y) under the action of the automorphism group of F and

”translations” UA and K is manifest. The generator ∆ simply rescales d(X ,Y), while

under the action of the negative grade generators one finds that d(X ,Y) gets multiplied

by functions linear in X and Y. Hence the quasiconformal group action preserves light-like

separations

d(X ,Y) = 0

defined by the quartic norm. This is the reason why the above geometric action of G was

called quasiconformal in [7].

Here we should stress an important point. The construction of a simple Lie algebra

g over a FTS F extends in a straightforward manner to the complex Lie algebra g(C) by

complexifying F . Then the above realization of the quasiconformal action of G extends

to a quasiconformal action of G(C). One can then obtain quasiconformal realizations of

different real forms of G by appropriate restriction of the complex G(C).

4. Minimal unitary representations of non-compact groups from their qua-

siconformal realizations

In this section we shall review the unified construction of minimal unitary representations

of noncompact groups obtained by quantization of their geometric realizations as quasi-

conformal groups following [11] which generalizes earlier results of [8 – 10]. Consider the

5-graded decomposition of the Lie algebra g of a noncompact group G

g = g−2 ⊕ g−1 ⊕ (h ⊕ ∆) ⊕ g+1 ⊕ g+2

g = E ⊕ Eα ⊕ (Ja + ∆) ⊕ Fα ⊕ F (4.1)

where ∆ is the generator that determines the 5-grading. Generators Ja of h satisfy

[
Ja , Jb

]
= fab

cJ
c (4.2a)

where a, b, . . . = 1, . . . D = dim(H). Let ρ denote the symplectic representation by which

h acts on g±1

[Ja , Eα] = (λa)αβEβ [Ja , Fα] = (λa)αβF β (4.2b)

where Eα, α, β, .. = 1, .., N = dim(ρ) are generators that span the subspace g−1

[
Eα , Eβ

]
= 2ΩαβE (4.2c)

and Fα are generators that span g+1

[
Fα , F β

]
= 2ΩαβF (4.2d)

– 7 –
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Ωαβ is the symplectic invariant “metric” of the representation ρ. The positive (negative)

grade generators form a Heisenberg subalgebra since

[Eα, E] = 0 (4.2e)

with the grade +2 (-2) generator F (E) acting as its central charge. The remaining non-

vanishing commutation relations of g are

Fα = [Eα , F ]

Eα = [E ,Fα]
[
Eα, F β

]
= −Ωαβ∆ + ǫλαβ

a Ja

[∆, Eα] = −Eα

[∆, Fα] = Fα

[∆, E] = −2E

[∆, F ] = 2F

(4.2f)

where ǫ is a constant parameter whose value depends on the Lie algebra g.

In the unified minimal unitary realization of noncompact groups [11], negative grade

generators are expressed as bilinears of bosonic oscillators ξα satisfying the canonical com-

mutation relations [
ξα , ξβ

]
= Ωαβ (4.3)

and an extra coordinate y ,corresponding to the singlet in their quasiconformal realization
4

E =
1

2
y2 Eα = y ξα Ja = −1

2
λa

αβξαξβ (4.4)

The quadratic Casimir operator of the Lie algebra h is

C2 (h) = ηabJ
aJb (4.5)

where ηab is the Killing metric of the subgroup H , which is isomorphic to the automorphism

group of the underlying FTS F . The quadratic Casimir C2(h) is equal to the quartic

invariant of H in the representation ρ modulo an additive constant that depends on the

normal ordering chosen, namely

I4(ξ
α) = Sαβγδξ

αξβξγξδ = C2(h) + c (4.6)

where c is a constant and

Sαβγδ := λa(αβλa
γδ)

The grade +2 generator F has the general form

F =
1

2
p2 +

κ (C2(h) + C)

y2
(4.7)

where p is the momentum conjugate to the singlet coordinate y

[y, p] = i (4.8)

4Here let us emphasize that we are thereby realizing the Heisenberg algebra g−2 ⊕ g−1 in terms of

coordinate and momentum operators ξα , modulo a scale coordinate y which determines the central charge

E = 1

2
y2 . This is what we mean by quantization of the geometric action of the quasiconformal group.
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and κ and C are some constants depending on the Lie algebra g. The grade +1 generators

are then given by

Fα = [Eα, F ] = ip ξα + κy−1 [ξα , C2] (4.9)

For simple or Abelian H they take the form [11]

Fα = ip ξα − κy−1
[
2 (λa)αβξβJa + Cρ ξα

]
(4.10)

where Cρ is the eigenvalue of the second order Casimir of H in the representation ρ and

one finds [
Eα , F β

]
= −∆Ωαβ − 6κ (λa)αβ Ja (4.11)

where ∆ = − i
2 (yp + py).5

Using the results of [21] one can give a unified realization of all simple Lie algebras

in terms of the underlying FTS’s F [22]. In the most general case one finds that the

commutator of Eα and F β has the same form as above , namely [22]

[
Eα , F β

]
= −∆Ωαβ − ǫ (λa)αβ Ja

where ǫ is a constant and (λa)αβ are the matrices of the Lie algebra of automorphism group

H of the underlying FTS F .

For simple H the quadratic Casimir operator of the Lie algebra g is given by [11]

C2 (g) = JaJa +
2Cρ

N + 1

(
1

2
∆2 + EF + FE

)
− Cρ

N + 1
Ωαβ

(
EαF β + F βEα

)
(4.12)

Furthermore one finds that the quadratic Casimir of sl(2) and the contribution of the coset

generators Fα and Eβ to C2 (g) can all be expressed in terms of the quadratic Casimir JaJa

of H:

1

2
∆2 + EF + FE = κ (JaJa + C) − 3

8

Ωαβ

(
EαF β + F βEα

)
= 8κJaJa +

N

2
+ κCρN

(4.13)

and the quadratic Casimir of g reduces to a c-number [11]

C2 (g) = C

(
8κCρ

N + 1
− 1

)
− 3

4

Cρ

N + 1
− N

2

Cρ

N + 1
− κC2

ρN

N + 1
(4.14)

as required by irreducibility of the minimal representation. This is a general phenomenon

for all minimal unitary realizations of simple groups G [8 – 11, 22].

5In this section we follow the conventions of [11]. The indices α, β, .. are raised and lowered with

the antisymmetric symplectic metric Ωαβ = −Ωβα that satisfies ΩαβΩγβ = δα
β and V α = ΩαβVβ , and

Vα = V βΩβα.
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5. Mapping between Killing potentials in HSS and generators of minimal

unitary representations of isometry groups of σ-models

To establish a precise mapping between the Killing potentials of the isometry group G

of the sigma model in harmonic superspace and the generators of the minimal unitary

realization of G we shall rewrite the Killing potentials in an SU(2)A invariant manner by

contracting the generators given in section 4 with the spherical harmonics u+i and u−i.

First let us define6

√
2q+iu−

i := wc (5.1)√
2q+iu+

i := pc (5.2)

The poisson brackets of q+i

{q+i, q+j} = −1

2
ǫij (5.3)

imply that

{wc, pc} = −1 (5.4)

Under the conjugation˜we have
˜̃
q+i = −q+i

˜̃
u±

i = −u±
i

which imply

˜̃wc = wc (5.5)

˜̃pc = pc (5.6)

The Hamiltonian can then be written as

L+4 =
2P+4(Q+)

w2
c

(5.7)

The SU(2)A invariant Killing potentials that generate the isometry group G are then

Sp(2) : S++ := K++
ij u+iu+j = p2

c −
2P+4(Q+)

w2
c

, (5.8)

S0 = K++
ij (u+iu−j + u+ju−i) = wcpc + pcwc (5.9)

S−− = K++
ij u−iu−j = w2

c (5.10)

H : K++
a = taαβQ+αQ+β, (5.11)

G/H × Sp(2) : K+
α := K++

iα u+i = −
√

2

{
pcQ

+
α − 1

wc
∂−

α P+4(Q+)

}
, (5.12)

K−
α := K++

iα u−i = −
√

2wcQ
+
α (5.13)

6The wc and pc

wc

are labelled as fields w and N++ and interpreted geometrically as the central charge

coordinates Z0 and Z++ in [2].
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Comparing the above Killing potentials of the isometry group G with the generators

of the minimal unitary realization of G given in section 3 we have the following one-to-one

correspondence between the elements of harmonic superspace (HSS) and those of minimal

unitary realizations (MINREP)

HSS MINREP

wc y

pc p

{ , } i[ , ]

Q+α ξα

P+4(Q+) I4(ξ)

Ka++ = taαβQ+αQ+β Ja = λa
αβξαξβ

K+
α = K++

iα u+i Fα

K−
α = K++

iα u−i Eα

The Poisson brackets (PB) {, } in HSS formulation go over to i times the commutator

[, ] in the minimal unitary realization and the classical harmonic superfields wc, pc , that are

canonically conjugate under PB map to the canonically conjugate coordinate and momen-

tum operators y, p. Similarly, the harmonic superfields Q+α that form n conjugate pairs

under Poisson brackets go over to the oscillators ξα. This introduces a normal ordering

ambiguity in the quantum version of the quartic invariant. Thus the classical expression

relating the quartic invariant polynomial P+4 to the quadratic Casimir function in HSS

differs from the expression relating the quartic invariant I4 to the quadratic Casimir of

H by an additive c-number depending on the ordering chosen. The consistent choices for

the quadratic Casimir and corresponding c-numbers for all noncompact groups , whose

quotients with respect to their maximal compact subgroup are quaternionic symmetric,

can be found in [9 – 11].

The mapping between HSS and MINREP extends also to the equations relating the

quadratic Casimir of h to the quadratic Casimir of sp(2) and to the contribution of the coset

generators G/H ×Sp(2) to the quadratic Casimir of g modulo some additive constants due

to normal ordering.

Of course on the MINREP side we are working with simple quantum mechanical co-

ordinates and momenta, while in HSS the corresponding quantities are classical harmonic

analytic superfields. The easiest way to make more concrete the above mapping is to reduce

the 4d N = 2 σ model to one dimension and quantize it to get a supersymmetric quantum

mechanics ( with 8 superscharges). What the above mapping implies is that the spectrum

of the corresponding quantum mechanics must furnish a minimal unitary representation of

the isometry group , which is fully supersymmetric , since the supersymmetry generators

commute with the isometry group.

6. Discussion

We find the correspondence between the formulation of N = 2 , d = 4 quaternionic Kähler

σ models in HSS and the minimal unitary realizations of their isometry groups established
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above quite remarkable. We will discuss some of the implications of this correspondence

and open problems, that will be the subjects of separate investigations.

It is important to extend the correspondence between the minimal unitary represen-

tation of the isometry group and the classical N = 2 , d = 4 quaternionic Kähler σ model

to its quantum theory in HSS. There is a subtle issue regarding the quantum implementa-

tion of the conjugation˜with respect to which the harmonic derivative D++ is real. This

extension to the quantum theory and resolution of the subtle issues should be easier if

one reduces the quaternionic Kähler N = 2 σ model to two dimensions or to quantum

mechanics with eight supersymmetries [23]. For the following discussion we shall assume

that there is no obstruction to extending the mapping to the quantum theory.

The correspondence established for symmetric space theories implies that the funda-

mental spectra of the quantum N = 2 , quaternionic Kähler σ models in d = 4 and their

lower dimensional counterparts must fit into the minimal unitary representations of their

isometry groups. By the fundamental spectra we mean the well-defined states created by

the action of harmonic analytic superfields at a given point in analytic superspace with

coordinates ζM on the vacuum of the theory. From the mapping above we expect that the

states created by the purely bosonic components of the analytic superfields will fit into the

minimal unitary representation of the corresponding isometry group. Since the analytic

superfields are unconstrained, the bosonic spectrum extends to an N = 2 supersymmetric

spectrum ( 8 supercharges) by the action of the fermionic components of the superfields.

Now the minimal unitary representations are the analogs of the singleton representa-

tions of symplectic groups Sp(2n, R). The singleton realizations of sp(2n, R) are free field

realizations , i.e. their generators can be written as bilinears of bosonic oscillators . As a

consequence the tensoring procedure becomes simple and straightforward for the symplec-

tic groups [24]. However , for other groups the minimal unitary realization is ”interacting”

and the corresponding generators are nonlinear in terms of the oscillators. This makes the

tensoring problem highly nontrivial. The tensoring of Fock spaces of free bosons in the case

of Sp(2n, R) will go over to tensoring of corresponding minimal unitary representations for

other noncompact groups. For the quantum N = 2 quaternionic Kähler σ models one then

has to tensor the fundamental supersymmetric spectra with each other repeatedly. By an

abuse of terminology we shall refer to the resulting spectra as ”perturbative” spectra in

quantum HSS. The ”nonperturbative” spectra in quantum HSS will , in general, contain

states that do not form full N = 2 supermultiplets.

The fundamental spectrum is generated by the action of analytic harmonic superfields

involving an infinite number of auxiliary fields. Once the auxiliary fields are eliminated

the dynamical components of the superfields become complicated nonlinear functions of

the physical bosonic and fermionic fields. Therefore the fundamental spectrum in HSS

correspond to states created by some complicated nonlinear functions of the physical fields

in general. Hence the ”fundamental spectrum” is in general not the simple Fock space of

free bosons and fermions.

Since the HSS formulation extends to all N = 2 supersymmetric σ models in d = 4,

we expect the fundamental spectra of all N = 2, σ models with nontrivial isometry groups

to form minimal unitary representations of their isometry groups. An important class
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of N = 4, σ models in d = 3 ,whose scalar manifolds are not homogeneous , but have

interesting isometry groups can be obtained by dimensional reduction ( CR-map = C-map

times R-map ) from unified N = 2 Maxwell-Einstein supergravity theories in d = 5 [5, 25].

These unified d = 5, N = 2 MESGTs with simple U-duality groups belong to three

infinite families plus a sporadic one. The sporadic theory and the lowest members of

the three infinite families are the magical MESGTs whose scalar manifolds are symmetric

spaces [26] in 5, 4 and 3 dimensions. The scalar manifolds of the other unified theories

in d = 5 are neither symmetric nor homogeneous [25]. The resulting three dimensional

N = 4, quaternionic Kähler σ models can then be lifted up to four dimensional N = 2

supersymmetric σ models, with a rich family of interesting isometry groups.

The N = 2 , d = 4 MESGT’s lead to N = 4 , d = 3 supersymmetric σ models with

quaternionic Kähler manifolds M3 under dimensional reduction on a spacelike circle (C-

map). On the other hand the stationary black hole solutions of N = 2 MESGTs can

be reduced to three Euclidean dimensions on a timelike circle. The resulting theory is

d = 3 Euclidean gravity coupled to a para-quaternionic Kähler manifold M∗
3 [27, 28]. For

radially symmetric stationary (supersymmetric) black holes the attractor equations become

equivalent to (supersymmetric) geodesic motion on M∗
3 [29]. The radial quantization of

BPS black hole solutions can then be implemented by replacing functions on classical

phase space on M∗
3 by square integrable functions on M3 [27, 28]. Furthermore, the 8n

dimensional general phase space is reduced to 4n + 2 dimensional subspace after imposing

the BPS conditions, which can be identified with the twistor space of M3 [28, 30]. For very

special symmetric quaternionic Kähler manifolds that are obtained from d = 5 , N = 2

MESGTs by dimensional reduction to three dimensions the corresponding manifolds are

of the form

M3 =
QCon(J)

Konf(J) × SU(2)
(6.1)

M∗
3 =

QCon(J)

Conf(J) × Sl(2, R)
(6.2)

where QConf(J) and Conf(J) denote the quasiconformal and conformal groups of the

Jordan algebras J of degree three that define the corresponding five dimensional theory,

respectively. Konf(J) refers to the compact form of the conformal group Conf(J) of the

Jordan algebra J . Conf(J) has been proposed as a spectrum generating symmetry group

of the 5d, N = 2 MESGT [31, 7, 32] and QConf(J) has been proposed as the spectrum

generating symmetry group of 4d, N = 2 MESGT defined by J [7, 32]. The twistor space

on M3 is simply
QConf(J)

Konf(J) × U(1)

whose Kähler potential is given by the distance function that defines the quartic light-

cone [33, 28]. Hence the BPS Hilbert space must form a unitary representation of G3

induced by the geometric realization of G3 as a quasiconformal group [28]. The unitary

representations that arise this way belong to the quaternionic discrete series and are not

the minimal unitary representations whose Gelfand-Kirillov dimensions are much smaller.

Since the BPS states correspond to four supercharges this result is not surprising. However,
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the results presented above imply that the N = 4, d = 3 symmetric quaternionic Kähler σ

models have fundamental spectra which preserve all the supersymmetries. Whether there

exist fully supersymmetric black hole solutions belonging to the fundamental spectra in

these theories is currently under investigation [28].
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